

Synthetic gene-length DNA: Evolving export control concerns

James Diggans, PhD Director, Bioinformatics and Biosecurity

July • 2019

Disclaimer

Dr. Diggans is Director of Bioinformatics and Biosecurity at Twist Bioscience in San Francisco, California. He is also Twist's representative to the Board of the International Gene Synthesis Consortium (IGSC). Dr. Diggans is presenting today in his capacity as a Twist Bioscience employee and not as an IGSC board member. Accordingly, the views he expresses do not necessarily reflect the views of the IGSC.

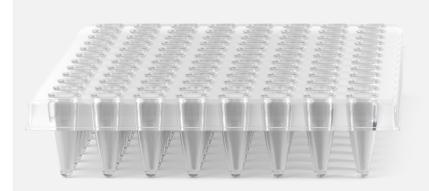
Founded 2013

IPO in October, 2018

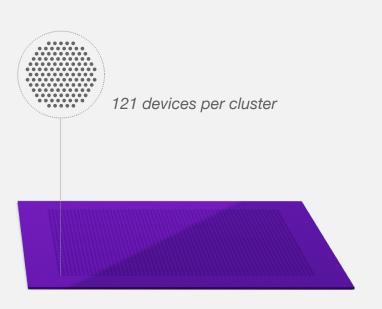
~350 global employees

San Francisco

South San Francisco


Tel Aviv

San Diego


Singapore

Rewriting DNA with the Power of Silicon

96 WELL PLATE makes 1 gene

TWIST SILICON PLATFORM makes 9,600 genes

Developing Game-Changing Throughput and Cost through Quality and Speed at Scale

Twist Products

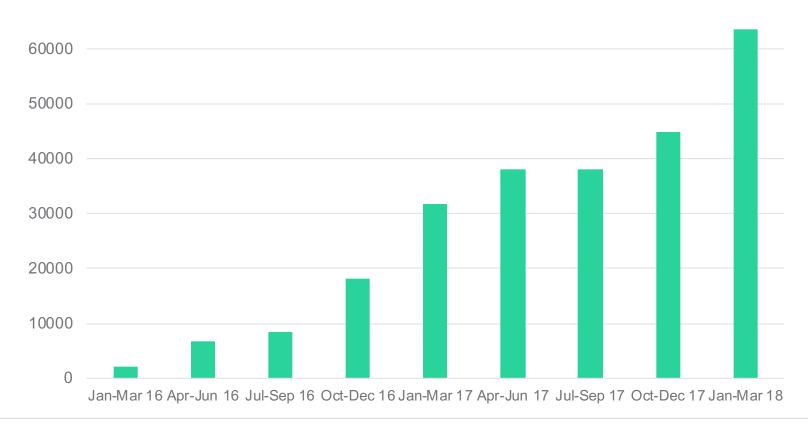
Precision DNA Synthesis at Scale

Genes

Oligo Pools

Libraries

NGS


Data Storage

Precision DNA Synthesis at Scale

Genes: Scale at Twist

>180,000 GENES SHIPPED Jan '16 – Mar '18

Apr – Jun 2016 **2,000 genes per month** Jan – Mar 2017 **10,000 genes per month** Oct – Dec 2017 15,000 genes per month Jan – Mar 2018 >20,000 genes per month

Scale: horizontal and vertical

Twist Bioscience to Provide One Billion Base Pairs of Synthetic DNA to Ginkgo Bioworks to Support Expansion into New Industries

Ginkgo Bioworks and Twist Bioscience Continue to Drive Industry Growth

Export Control at Twist

When does a sequence require an export license?

U.S. Export Administration Regulations (EAR)

- Controlled human and animal pathogens and toxins are listed in 1C351; controlled plant pathogens are listed in 1C354.
- DNA sequences from controlled items in 1C351 and 1C354 may require licensing if they meet criteria defined in ECCN 1C353.
 - All genes specific to controlled viruses require a license.
 - Bacterial genes that do not 'endow or enhance' pathogenicity or are not unique to controlled species do not require a license.

- a.1. Any gene or genes specific to any virus controlled by 1C351.a or .b or 1C354.c;
- a.2. Any gene or genes specific to any bacterium controlled by 1C351.c or 1C354.a, or any fungus controlled by 1C351.e or 1C354.b, and which:
 - a.2.a. In itself or through its transcribed or translated products represents a significant hazard to human, animal or plant health; *or*
 - a.2.b. Could endow or enhance pathogenicity; *or*
- a.3. Any toxins, or their subunits, controlled by 1C351.d.

https://www.bis.doc.gov/index.php/regulations/commerce-control-list-ccl

The Australia Group (AG)

U.S. export control for DNA sequence is identical to that of 43 other nations

The AG harmonized national export control for dual-use chemical and biological materials to promote cooperation and uniformity internationally.

- Founded in 1985 after use of chemical weapons in the Iran/Iraq war
- Participant nations implement AG control lists for export licensing
- Currently 43 participant nations including the U.S. and EU, Canada, India, Korea and Japan. China is not currently a participant nation.
- U.S. EAR is updated to reflect changes to AG control lists and language

Australia Group

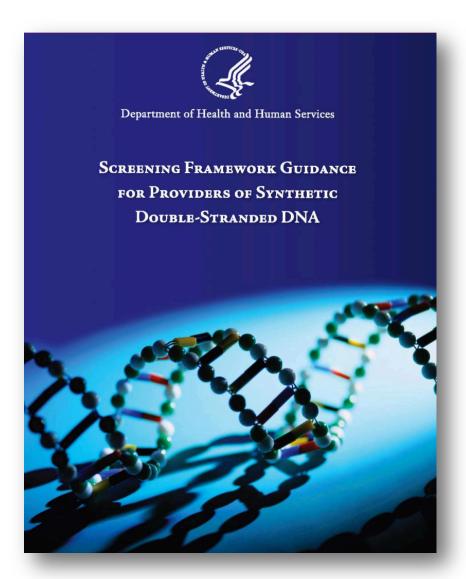
Genetic Elements and Genetically-modified Organisms:

Any genetically-modified organism¹ which contains, or genetic element² that codes for:

- 1. any gene or genes specific to any listed virus; or
- 2. any gene or genes specific to any listed bacterium³ or fungus, and which
 - a. in itself or through its transcribed or translated products represents a significant hazard to human, animal or plant health, or
 - b. could endow or enhance pathogenicity⁴; or
- 3. any listed toxins or their sub-units.

U.S. EAR CCL 1C353

- a.1. Any gene or genes specific to any virus controlled by 1C351.a or .b or 1C354.c;
- a.2. Any gene or genes specific to any bacterium controlled by 1C351.c or 1C354.a, or any fungus controlled by 1C351.e or 1C354.b, and which:
 - a.2.a. In itself or through its transcribed or translated products represents a significant hazard to human, animal or plant health; *or*
 - a.2.b. Could endow or enhance pathogenicity; *or*
- a.3. Any toxins, or their subunits, controlled by 1C351.d.


https://australiagroup.net/en/participants.html

2010 HHS Guidance

In 2010, the U.S. government published guidance to synthetic DNA manufacturers that defines best practices for:

- Customer screening
- Sequence screening
- Customer 'red flag' follow up
- Records retention

https://www.phe.gov/Preparedness/legal/guidance/syndna/Pages/default.aspx

International Gene Synthesis Consortium Members

ATUM	GenScript
Battelle	The Edinburgh Genome Foundry
BGI	IDT
Bioneer	SGI-DNA
Blue Heron	Thermo Fisher
Ginkgo Bioworks	Twist Bioscience

https://genesynthesisconsortium.org/

Biosecurity at Twist

Ensuring safe, secure DNA synthesis

Upon submission to Twist, all gene synthesis orders are subject to:

- Customer screening
 - Verifies legitimacy with respect to an institution and identity with respect to an individual
 - Is the customer or institution on any lists maintained by the Departments of Commerce, State and Treasury?
 - Is the customer licensed to carry out work on regulated pathogens?
 - Ensure the shipping address is not a PO Box or private residence
- Sequence screening
 - Is the sequence from a regulated bacterial or viral pathogen?
 - Is the sequence from a gene that can endow or enhance pathogenicity?
 - Is the sequence legal to manufacture and ship within the United States?
 - Does the sequence require an export license to ship overseas?

These are industry best practices as codified in U.S. government guidance and the IGSC Harmonized Screening Protocol.

Recent Challenges in Export Control

2010 Guidance - Challenges

Customer screening

- Relies on name matching to government lists of proscribed entities
- Can be difficult internationally to resolve addresses as nonresidential
- Defining the end user can be complicated

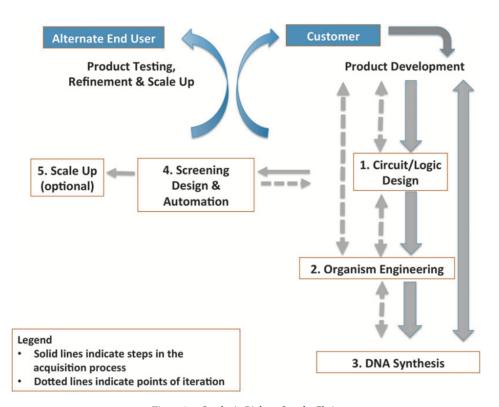
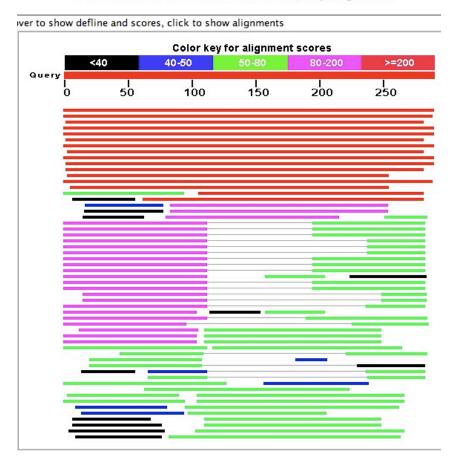


Figure 2. Synthetic Biology Supply Chain

https://www.liebertpub.com/doi/abs/10.1089/hs.2016.0083


2010 Guidance - Challenges

Sequence screening

- Mapping/maintenance of species names to NCBI taxon IDs
- What about fragments intended for assembly?
 - E.g. the entire ebola genome in overlapping, non-ORF fragments.
 - Current practice: send letter re: reexport license requirement after assembly
- How do we estimate the performance of screening implementations?

Distribution of 491 Blast Hits on the Query Sequence

2010 Guidance - Challenges

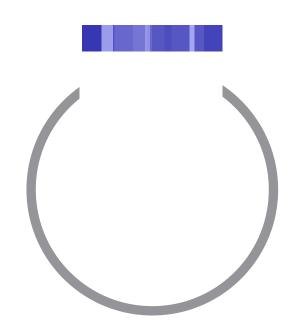
Export control

- 'Endow or enhance' pathogenicity
 - Much improved over 'associated with pathogenicity'
- Mapping/maintenance of species names to NCBI taxon IDs
 - USG lists could use the taxon ID as the unit of control to remove ambiguity
- Biologically-centered control language e.g. avian influenza / Newcastle disease
- Significance of open reading frame
 - E.g. 'capable of encoding a protein'

- a.4. Avian influenza (AI) viruses identified as having high pathogenicity (HP), as follows:
- a.4.a. AI viruses that have an intravenous pathogenicity index (IVPI) in 6-week-old chickens greater than 1.2; *or*
- a.4.b. AI viruses that cause at least 75% mortality in 4- to 8-week-old chickens infected intravenously.

A virulent Newcastle disease virus (avian paramyxovirus serotype 1) has an intracerebral pathogenicity index in day-old chicks (Gallus gallus) of 0.7 or greater or has an amino acid sequence at the fusion (F) protein cleavage site that is consistent with virulent strains of Newcastle disease virus. A failure to detect a cleavage site that is consistent with virulent strains does not confirm the absence of a virulent virus.

ORF Definitional Challenges



When is a sequence controlled?

- Full open reading frame (ORF) is controlled so ...
 - Customers ordered ORF 1 amino acid or -1 base
 - Customers ordered shortened ORF but onboarded a custom vector with the remainder of the ORF in the vector homology arms
 - Customers iteratively order shortened ORFs until no trigger occurs

AG controls are (in a round-about way) targeted at function

- 49% of a controlled ORF can still preserve a functional domain
- Challenge: How can a synthesis company make rapid determinations of preservation of function?

Turn around time (TAT)

To compete, we must deliver DNA quickly

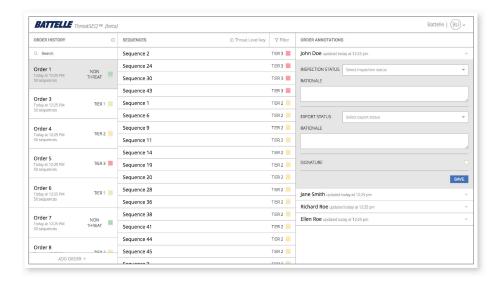
- DNA synthesis companies compete on TAT
 - Scientists want to carry out their experiments immediately
 - Time spent on synthesis is a barely-tolerated delay
- Twist TAT for non-clonal DNA is ~6-9 days; for clonal DNA, it is ~11-17 days
 - plus time spent for international shipping, clearing customs, etc.
- BIS suggested remedy for uncertainty around license requirement is a classification request
 - BIS turns these around heroically usually within two weeks!
 - That still nearly doubles our TAT customers usually use domestic (i.e. non-US) providers instead

Twist Innovation

Red Teaming

Estimating performance of complex systems

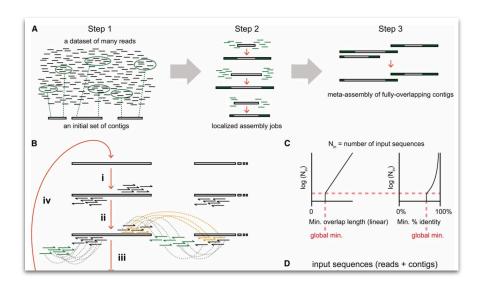
- IGSC onboarding process includes test data analysis
- Twist hired a third party to attempt to subvert our screening process
- We learned a lot by doing this
- Key findings
 - blastx alignments vs. NCBI's nr database were sensitive
 - Sequence annotation quality and coverage was the primary weakness



ThreatSeq Adoption

High-quality, curated metadata drives screening performance

- Twist incorporating Battelle ThreatSeq into our biosecurity screening backend
- Advantages
 - Reduced false positive hit rate
 - Immediate contextualization of hit to known virulence factors
 - Maintained and expanded over time by a team of curators


https://www.battelle.org/commercial-offerings/industry-solutions/threatseq-dna-screening-web-service

Screening oligos and oligo pools

NGS assembly routinely analyzes millions of oligo-length sequences

- De novo assembly of 100M+ reads is common/tractable in metagenomics
- 100M oligos is ... a big oligo pool.

- Twist currently prototyping methods for recovering intended gene assemblies from large oligo pools
 - Wheat vs. chaff
 - Multiplex assemblies
 - Varied assembly strategies

http://www.g3journal.org/content/3/5/865

Changing Scientific Landscape

Emerging Challenges

https://cen.acs.org/biological-chemistry/synthetic-biology/Synthetic-biology-enable-bioweapons-development/96/i2

"Making ineffective biological weapons is easy, making effective biological weapons is not easy."

Margaret Kosal, GA Tech

Addressing emerging challenges

- 'Species' is a less and less useful concept
- Protein design is ever more capable and powerful
- Oligo pools and easy gene assembly protocols
- Data storage in DNA
- S&T efforts e.g. IARPA FunGCAT
- The synthetic biology supply chain is complex

Recent Twist paper on next steps

- Expand customer screening recommendation across synbio supply chain
- Regular red teaming to estimate system performance
- Screening of oligos and oligo pools via NGS-derived methods
 - Applies both within- and between orders
 - Subject assembly results to gene-length sequence screening; follow-up screening on hits
- Additional S&T investment:
 - Expanded FunGCAT-like tooling for screening including open source / publicly available screening tools
 - Homomorphic encryption methods for centralization of screening results

https://www.frontiersin.org/articles/10.3389/fbioe.2019.00086/abstract

How can Commerce help US companies compete?

- Continued Australia Group advocacy export controls drive a need for innovation
 - Evolution of the unit of control: Species -> protein sequences -> function?
 - Control of oligo pools that can be used for gene assembly?
 - Control of fragments trivially assembled into controlled genes?
- API for SNAP-R request submission
 - Would allow company systems to submit classification and licensing requests directly without web interface point-and-click
 - Reduce cost and speed TAT allow for more classification requests

Questions?

jdiggans@twistbioscience.com

