

Discussion of Intrusion Software Controls for Bureau of Industry and Security's (BIS) Information Systems Technical Advisory Committee (ISTAC)

Technology Case Studies Example Affected Products

© Ionic Security Inc.

Ionic Security Overview

- Information must be protected from the point of creation to point of consumption
- Businesses must maintain control over critical data... no matter where it resides.

Ionic Security Value

Protection:

- Scalable encryption & key management
 - Enforce policy at the moment of data consumption
- Dynamically revoke access to data *Visibility:*
- Coverage of all devices & data types
- Unified platform & single viewpoint
- User profiling & behavioral analysis **Control:**
- Apply rights management to apps & data
- Centralized dynamic policy enforcement

Swept Into Definition

Proposed Intrusion Software Language (ECCN 4A005)

- "Systems," ''equipment," or ''components'' therefor, ''specially designed'' or modified for the generation, operation or delivery of, or communication with, ''intrusion software''
- Intrusion software: (Cat 4) "Software" "specially designed" or modified to avoid detection by 'monitoring tools', or to defeat 'protective countermeasures', of a computer or networkcapable device, and performing any of the following:
 - a) The extraction of data or information, from a computer or network-capable device, or the modification of system or user data; or
 - b) The modification of the standard execution path of a program or process in order to allow the executions of externally provided instructions

Product Capabilities

© Ionic Security Inc.

Recovery Tools Overview

- An example class of malware are "crypto-lockers" or "ransomware"
 - Encrypts all the user's valuable files
 - Asks the user to pay a "ransom" to get the decryption keys back
 - An example piece of malware is called "Teslacrypt"
- Corresponding recovery tool example:
 - Easy-to-use tool that results in the user recovering their files and removing the Teslacrypt malware.

Value

_ _

- Assist a user in regaining control of their system.
- Remove malware from system.
- Recover data/files if applicable.
 - i.e. in cases of ransomware
- Stop the spread of malware laterally to other systems.

Screenshots from http://blogs.cisco.com/security/talos/teslacrypt

PUBLIC INFORMATION

5

Swept Into Definition

Proposed Intrusion Software Language (ECCN 4A005)

- "Systems," ''equipment," or ''components'' therefor, ''specially designed'' or modified for the generation, operation or delivery of, or communication with, ''intrusion software''
- Intrusion software: (Cat 4) "Software" "specially designed" or modified to avoid detection by 'monitoring tools', or to defeat 'protective countermeasures', of a computer or networkcapable device, and performing any of the following:
 - a) The extraction of data or information, from a computer or network-capable device, or the modification of system or user data; or
 - b) The modification of the standard execution path of a program or process in order to allow the executions of externally provided instructions

Product Capabilities

- Defeats the system and malware's protective countermeasures, potentially including:
 - Mitigations such as DEP/ASLR
 - Any Process/Session Isolation
 - Malware's integrity checking
- Modifies the execution path of the malware.
- Extracts data from the malware to obtain the encryption keys.
- Extracts and modifies data from the system to recover the encrypted files.
- Is delivered in an package from the providing company's servers to users so they can run it.

Examples of Definitions Used

Rootkit	 Is described as presumptively offensive, but is a crucial capability for anti-virus programs to be able to intercept/ inspect/modify system actions at a low level to stop malicious software.
"Avoid detection" or "defeat"	• FAQ #8 states auto-updaters are not controlled because they "may need to interact" with monitoring tools/etc but don't "defeat" or "subvert" the system. Interaction in these cases, however, is to keep the monitoring tool from detecting the update as malicious and interrupting it.
"Monitoring tool"	 FAQ #8 says anti-virus is excluded as it is a monitoring tool. Nothing says that all monitoring tools are excluded. Software like keyloggers can be monitoring tools for legitimate or illegitimate purposes.

Exploits/Malware for Defensive vs. Offensive Purposes

Defensive

- Need to design defenses that can stop not just a single sample, but current/future variants of it.
- Need technology, not just samples, to understand the root cause of the vulnerability.
 - Patching the root cause means a better defense.
 - Patching without understanding root cause has a long history of being ineffective.
- If attacker has a mass-distribution method (botnet C&C, mutation generator, etc) then need this as well to discover how to stop it.
 - Analyze communication methods to malware to write network signatures.
 - Analyze mutation generators to make signatures to catch variants.

Offensive

- Only need to succeed once.
- A single sample of malware is enough to compromise a target.
- No need for user to understand the root cause of the vulnerability, just need to 'throw' the malware/exploit against a vulnerable target.
- Can be delivered with general purpose tools, for example:
 - Email attachment (spear-phishing)
 - Seeding of webpages
 - Exploit delivered by netcat or other simple socket communications to a vulnerable system.

Contact Information

Ryan Speers Director of Applied Research ryan@ionic.com

© Ionic Security Inc.

PUBLIC INFORMATION

9